EconPapers    
Economics at your fingertips  
 

Short-Term Prediction for Indoor Temperature Control Using Artificial Neural Network

Byung Kyu Park () and Charn-Jung Kim
Additional contact information
Byung Kyu Park: Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
Charn-Jung Kim: Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea

Energies, 2023, vol. 16, issue 23, 1-17

Abstract: Recently, data-based artificial intelligence technology has been developing dramatically, and we are considering how to model, predict, and control complex systems. Energy system modeling and control have been developed in conjunction with building technology. This study investigates the use of an artificial neural network (ANN) for predicting indoor air temperature in a test room with windows on an entire side. Multilayer perceptron (MLP) models were constructed and trained using time series data obtained at one-second intervals. Several subsampling time steps of 1 s, 60 s, 300 s, 600 s, 900 s, 1800 s, and 3600 s were performed by considering the actual operation control mode in which the time interval is important. The performance indices of the neural networks were evaluated using various error metrics. Successful results were obtained and analyzed based on them. It was found that as the multi-step time interval increases, performance degrades. For system control designs, a shorter prediction horizon is suggested due to the increase in computational time, for instance, the limited computing capacity in a microcontroller. The MLP structure proved useful for short-term prediction of indoor air temperature, particularly when control horizons are set below 100. Furthermore, highly reliable results were obtained at multi-step time intervals of 300 s or less. For the multivariate model, both calculation time and data dispersion increased, resulting in worsened performance compared to the univariate model.

Keywords: short-term prediction; unsteady state; indoor temperature control; artificial neural network; deep learning; building window (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/23/7724/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/23/7724/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:23:p:7724-:d:1285828

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7724-:d:1285828