EconPapers    
Economics at your fingertips  
 

Power Generation with Renewable Energy and Advanced Supercritical CO 2 Thermodynamic Power Cycles: A Review

Xinyu Zhang and Yunting Ge ()
Additional contact information
Xinyu Zhang: School of the Built Environment and Architecture, London South Bank University, 103 Borough Road, London SE1 0AA, UK
Yunting Ge: School of the Built Environment and Architecture, London South Bank University, 103 Borough Road, London SE1 0AA, UK

Energies, 2023, vol. 16, issue 23, 1-32

Abstract: Supercritical CO 2 (S-CO 2 ) thermodynamic power cycles have been considerably investigated in the applications of fossil fuel and nuclear power generation systems, considering their superior characteristics such as compactness, sustainability, cost-effectiveness, environmentally friendly working fluid and high thermal efficiency. They can be potentially integrated and applied with various renewable energy systems for low-carbon power generation, so extensive studies in these areas have also been conducted substantially. However, there is a shortage of reviews that specifically concentrate on the integrations of S-CO 2 with renewable energy, encompassing biomass, solar, geothermal and waste heat. It is thus necessary to provide an update and overview of the development of S-CO 2 renewable energy systems and identify technology and integration opportunities for different types of renewable resources. Correspondingly, this paper not only summarizes the advantages of CO 2 working fluid, design layouts of S-CO 2 cycles and classifications of renewable energies to be integrated but also reviews the recent research activities and studies carried out worldwide on advanced S-CO 2 power cycles with renewable energy. Moreover, the performance and development of various systems are well grouped and discussed.

Keywords: CO 2 working fluid; supercritical power cycles; renewable energy; advanced power generation systems; applications (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/23/7781/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/23/7781/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:23:p:7781-:d:1288171

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7781-:d:1288171