Manifold Learning in Electric Power System Transient Stability Analysis
Petar Sarajcev () and
Dino Lovric
Additional contact information
Petar Sarajcev: Department of Electric Power Systems, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boskovica 32, HR-21000 Split, Croatia
Dino Lovric: Department of Electric Power Systems, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boskovica 32, HR-21000 Split, Croatia
Energies, 2023, vol. 16, issue 23, 1-20
Abstract:
This paper examines the use of manifold learning in the context of electric power system transient stability analysis. Since wide-area monitoring systems (WAMSs) introduced a big data paradigm into the power system operation, manifold learning can be seen as a means of condensing these high-dimensional data into an appropriate low-dimensional representation (i.e., embedding) which preserves as much information as possible. In this paper, we consider several embedding methods (principal component analysis (PCA) and its variants, singular value decomposition, isomap and spectral embedding, locally linear embedding (LLE) and its variants, multidimensional scaling (MDS), and others) and apply them to the dataset derived from the IEEE New England 39-bus power system transient simulations. We found that PCA with a radial basis function kernel is well suited to this type of power system data (where features are instances of three-phase phasor values). We also found that the LLE (including its variants) did not produce a good embedding with this particular kind of data. Furthermore, we found that a support vector machine, trained on top of the embedding produced by several different methods was able to detect power system disturbances from WAMS data.
Keywords: electric power system; bulk power system; transient stability analysis; rotor angle stability; wide-area monitoring system; machine learning; manifold learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/23/7810/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/23/7810/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:23:p:7810-:d:1289033
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().