Comparative Analysis of Estimated and Actual Power Self-Sufficiency Rates in Energy-Sharing Communities with Solar Power Systems
Dawon Kim,
Yonghae Jang and
Yosoon Choi ()
Additional contact information
Dawon Kim: Department of Energy Resources Engineering, Pukyong National University, Busan 48513, Republic of Korea
Yonghae Jang: Busan Eco Delta City Project Group, Korea Water Resource Corporation, Busan 46717, Republic of Korea
Yosoon Choi: Department of Energy Resources Engineering, Pukyong National University, Busan 48513, Republic of Korea
Energies, 2023, vol. 16, issue 24, 1-20
Abstract:
Amid the ongoing climate crisis, the international community is enacting policies to promote low-carbon energy-sharing communities. The primary objective of such communities is to enhance community-level energy self-sufficiency. Accurate energy self-sufficiency assessments are paramount in planning energy-efficient architectural designs, urban landscapes, and communal environments. In this study, the energy self-sufficiency rate of an energy-sharing community was estimated at the design stage and compared with the actual energy self-sufficiency rate calculated based on data collected over the following year (April 2022 to March 2023). The outcomes reveal that the estimated energy self-sufficiency rate is 171%, whereas the realized rate is 133%, underscoring the disparity between the projections and outcomes. An analysis of the seasonal variations in these discrepancies elucidated a correlation between the differences in the insolation levels between standard typical meteorological year (TMY) data that are conventionally used for energy generation projections and the actual meteorological conditions. Moreover, a notable incongruity surface exists between the monthly average electricity consumption of a standard four-person household, as stipulated by the Korean Electric Power Corporation (KEPCO) at 273 kWh, and the empirical power consumption at 430 kWh, resulting in a variance of approximately 157 kWh. This study illuminates the complex relationship between variables affecting energy self-sufficiency in energy-sharing communities. It serves as a crucial step towards informed decision making and precision in sustainable urban energy solutions.
Keywords: renewable energy; photovoltaic system; energy self-sufficient rate; energy-sharing community; energy analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/24/7941/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/24/7941/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:24:p:7941-:d:1295526
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().