Calculation of Losses in a Motor Fed by a Conventional Inverter and a Battery Distributed Inverter
Rémi Jardot (),
Guillaume Krebs,
Anas Lahlou,
Francis Roy and
Claude Marchand
Additional contact information
Rémi Jardot: GeePs Group of Electrical Engineering-Paris, UMR CNRS 8507, CentraleSupélec, Université Paris-Saclay, 91192 Gif Sur Yvette, France
Guillaume Krebs: GeePs Group of Electrical Engineering-Paris, UMR CNRS 8507, CentraleSupélec, Université Paris-Saclay, 91192 Gif Sur Yvette, France
Anas Lahlou: SAFT, 111-113, Boulevard Alfred Daney, 33074 Bordeaux, France
Francis Roy: Stellantis, Centre Technique de Carrières-sous-Poissy, 212 Boulevard Pelletier, 78955 Carrières-sous-Poissy, France
Claude Marchand: GeePs Group of Electrical Engineering-Paris, UMR CNRS 8507, CentraleSupélec, Université Paris-Saclay, 91192 Gif Sur Yvette, France
Energies, 2023, vol. 16, issue 24, 1-12
Abstract:
In the past decade, car manufacturers have started electrifying the traction chain of their vehicles. Although these vehicles attract more and more drivers, most of them have a limited range and are prohibitively expensive. Manufacturers must therefore offer high-performance conversion chains (particularly in terms of efficiency) while controlling costs. The power converter is a particularly crucial element of the conversion chains: it supplies the traction motor, and its structure and the way it is controlled can greatly influence the overall efficiency of the drive train. This paper studies two conversion structures that can be used as vehicle power converters, which are modeled and associated with an electric machine. The first is a classical three-phase inverter, and the second is a breakthrough architecture called IBIS (Intelligent Battery Integrated System). This battery integrates the conversion function directly into the battery, which reduces material costs. Two loss phenomena are also studied and modeled (with the help of finite element methods): iron losses in the electrical machine (magnetic losses in the ferromagnetic material used) and copper losses in the conductors (AC and DC losses in the conductors). The impact of the architecture is evaluated on a set of operating points from a road cycle standardized by the WLTP procedure.
Keywords: permanent magnet synchronous motor; electric vehicle; machine losses (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/24/7993/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/24/7993/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:24:p:7993-:d:1297353
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().