The Efficiency Improvement of Track-Type Wireless Power Transmission Systems through Electromagnetic Finite Element Analysis
Changdae Joo and
Taekue Kim ()
Additional contact information
Changdae Joo: Department of Electric Engineering, Changwon National University, Changwon 51140, Republic of Korea
Taekue Kim: Department of Electric Engineering, Changwon National University, Changwon 51140, Republic of Korea
Energies, 2023, vol. 16, issue 24, 1-19
Abstract:
The original system, designed as a combination structure of a linear machine and a wireless power transmission transformer, was designed to overcome the limitations of the wired power supply method used for working robots and transportation equipment in existing smart factories, and improvements in magnetic coupling and power transfer efficiency are needed. In this work, we study the efficiency improvement of a system that can supply wireless power to track-type transportation equipment. For this purpose, electromagnetic properties such as magnetic equivalent resistance, inductance, magnetic coupling rate, and core loss are analyzed using the finite element method. In addition, the results of magnetic field finite element analysis are applied in electrical equivalent circuit modeling to analyze the voltage transfer ratio and input/output characteristics of a CLLC resonant converter designed for wireless power transmission. The efficiency improvements of the proposed model are verified through a comparison of experimental and simulation results after fabricating a prototype. From the results of this study, a more optimized wireless power transmission system design based on the analysis results from an electromagnetic perspective can be realized to improve the efficiency of wireless power transmission.
Keywords: wireless power transmission system; core loss; finite element method; resonant converter; electrical circuit modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/24/8045/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/24/8045/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:24:p:8045-:d:1299477
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().