An Experimental Investigation and Numerical Simulation of Photovoltaic Cells with Enhanced Surfaces Using the Simcenter STAR-CCM+ Software
Magdalena Piasecka (),
Artur Piasecki and
Norbert Dadas
Additional contact information
Magdalena Piasecka: Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Artur Piasecki: Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Norbert Dadas: Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Energies, 2023, vol. 16, issue 24, 1-18
Abstract:
This article proposes a passive cooling system for photovoltaic (PV) panels to achieve a reduction in their temperature. It is known that the cooling of PV panels allows for an increase in the efficiency of photovoltaic conversion. Furthermore, reducing the high temperature of the surfaces of PV panels is also desirable to ensure their long-lasting operation and high efficiency. Photovoltaic panels were modified by adding copper sheets to the bottom side of the panels. Two types of modification of the outer surface of the sheet were investigated experimentally, which differed in surface roughness. One was characterised by the nominal roughness of the copper sheet according to its manufacturer, while the other was enhanced by a system of pins. Numerical simulations, performed using the Simcenter STAR-CCM+ software, version 2020.2.1 Build 15.04.010, helped to describe the geometry of the pins and their role in the resulting reduction in the temperature of the PV panel surface. As a result, modifying a typical PV panel by adding a copper sheet with pins helps to achieve a higher decrease in the temperature of the PV panel. The addition of a copper sheet with a smooth surface to the bare PV panel improved the operating conditions by lowering its surface temperature by approximately 6.5 K but using an enhanced surface with the highest number of pins distributed uniformly on the copper sheet surface resulted in the highest temperature drop up to 12 K. The highest number of pins distributed uniformly on the copper sheet surface resulted in the highest temperature drop in its bottom surface, that is, on average by more than 12 K compared to the surface temperature of the bare PV panel surface. The validation of the numerical calculations was performed on data from the experiments. An analysis of the quality of the numerical mesh was also performed using a method based on the grid convergence index.
Keywords: photovoltaic panel; improving efficiency; enhanced surface; numerical analysis; panel cooling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/24/8047/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/24/8047/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:24:p:8047-:d:1299578
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().