Smart Decentralized Electric Vehicle Aggregators for Optimal Dispatch Technologies
Ali M. Eltamaly ()
Additional contact information
Ali M. Eltamaly: Sustainable Energy Technologies Center, King Saud University, Riyadh 11421, Saudi Arabia
Energies, 2023, vol. 16, issue 24, 1-27
Abstract:
The number of electric vehicles (EVs) is growing exponentially, which presents the power grid with new challenges to turn their reliance to renewable energy sources (RESs). Coordination between the available generations from RESs and the charging time should be managed to optimally utilize the available generation from RESs. The dispatch scheduling of EVs can significantly reduce the impact of these challenges on power systems. Three different technologies can be used to manage the dispatch of EV batteries which are unregulated charging (UC), unidirectional grid-to-vehicle (G2V), and bidirectional vehicle-to-grid (V2G) technologies. This study aims to address the primary reason for EV owners’ disbelief in the accuracy of battery wear models, which is impeding their involvement in V2G technology. This paper introduces a novel accurate EV battery wear model considering the instantaneous change in the operation of the EV battery. Moreover, an effective musical chairs algorithm (MCA) is used to reduce everyday expenses and increase revenue for V2G technologies in a short convergence time with accurate determination of optimal power dispatch scheduling. The results obtained from these three strategies are compared and discussed. The salient result from this comparison is that V2G technology increases wear and reduces the battery lifespan in comparison with the UC and G2V. The yearly expenses of G2V are reduced by 33% compared to the one associated with the UC. Moreover, the use of V2G technology provides each EV owner with USD 3244.4 net yearly profit after covering the charging and wear costs. The superior results extracted from the proposed model showed the supremacy of V2G usage, which is advantageous for both EV owners and the power grid.
Keywords: electric vehicle; unregulated charging; V2G; G2V; battery wear model; musical chairs algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/24/8112/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/24/8112/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:24:p:8112-:d:1301872
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().