EconPapers    
Economics at your fingertips  
 

Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA)

Robert Ulewicz (), Dominika Siwiec and Andrzej Pacana
Additional contact information
Robert Ulewicz: Department of Production Engineering and Safety, Faculty of Management, Czestochowa University of Technology, 42-201 Czestochowa, Poland
Dominika Siwiec: Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland
Andrzej Pacana: Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland

Energies, 2023, vol. 16, issue 24, 1-23

Abstract: One of the global ecological problems is the excessive carbon dioxide emissions generated by vehicles in the transport sector, including passenger transport. Therefore, the objective of this investigation was to develop a model that supports the prediction of vehicle variants that will be satisfactory to the customer in terms of: (i) quality level and (ii) environmental impact throughout the life cycle. This model was developed with the following techniques: TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), LCA (Life Cycle Assessment), SMARTER (Specific, Measurable, Achievable, Relevant, and Time-bound), Pareto–Lorenz, and the Multi-Criteria Decision Method rule (7 ± 2). A model test was carried out for production variants of the electric vehicle BEV (battery electric vehicle) for which the quality level and life cycle assessment were estimated. Vehicle quality levels ranged from 0.15 to 0.69, with a weight of 0.75. However, vehicle life cycle scores were estimated in the range of 0.25 to 0.57, with a weight of 0.25. Ultimately, the level of the vehicles’ LCA ranged from 0.18 to 0.62. As a result, it was shown that on the basis of various modifications of the quality level of vehicle variants and the corresponding environmental impacts throughout their life cycle, it is possible to predict the vehicle variant that is most satisfactory for the customer and, at the same time, environmentally friendly. The originality of the model relies on supporting the making of sustainable design decisions and the planning of vehicle improvement actions according to customer expectations. Therefore, the model can be used to analyse different types of vehicles by producers and dealers of these products.

Keywords: quality; LCA; TOPSIS; electric vehicles; mechanical engineering; production engineering; design; management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/24/8122/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/24/8122/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:24:p:8122-:d:1302261

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:24:p:8122-:d:1302261