Research on Laboratory Test Method of Wave Energy Converter Wave-Wire Conversion Ratio in Irregular Waves
Liang Shangguan (),
Kuan Lu and
Huamei Wang
Additional contact information
Liang Shangguan: National Ocean Technology Center, Tianjin 300112, China
Kuan Lu: National Ocean Technology Center, Tianjin 300112, China
Huamei Wang: National Ocean Technology Center, Tianjin 300112, China
Energies, 2023, vol. 16, issue 2, 1-13
Abstract:
The laboratory test of the wave energy converter model is an important means to evaluate the performance of the device. At present, there are few performance tests for complete specifications under the irregular wave. Referring to the test methods and standards at home and abroad, combined with the actual test work experience in the laboratory, using the irregular wave power calculation formula with the effective wave height and the spectral peak period as parameters, then the wave-wire conversion ratio test method of the wave energy converter physical model under irregular waves in the laboratory is proposed. The method is applied to the basin test experiment of the physical model of the horn-shaped backward bent duct buoy (BBDB) wave energy converter. The research results show that the established test method and process of wave-wire conversion performance have achieved good application results in the irregular waves laboratory test, and can better reflect the device operating characteristics in real sea conditions. The test results provide data support for the model design of the wave energy converter in the next test stage, the demonstration test of the prototype, and the prediction of power generation in real sea conditions.
Keywords: wave energy converter; laboratory test method; physical model experiment; IRREGULAR wave test; wave-wire conversion ratio (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/2/1001/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/2/1001/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:2:p:1001-:d:1037688
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().