Life Cycle Analysis of Innovative Technologies: Cold Formed Steel System and Cross Laminated Timber
Ornella Iuorio (),
Antonio Gigante and
Rosa Francesca De Masi
Additional contact information
Ornella Iuorio: School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
Antonio Gigante: DING—Department of Engineering, University of Sannio, 82100 Benevento, Italy
Rosa Francesca De Masi: DING—Department of Engineering, University of Sannio, 82100 Benevento, Italy
Energies, 2023, vol. 16, issue 2, 1-22
Abstract:
Reducing the embodied and operational energy of buildings is a key priority for construction and real estate sectors. It is essential to prioritize materials and construction technologies with low carbon footprints for the design of new buildings. Off-site constructions systems are claimed to have the potential to deliver a low carbon build environment, but at present there are a lack of data about their real environmental impacts. This paper sheds lights on the environmental performance of two offsite technologies: cold formed steel and cross laminated timber. Specifically, the environmental impacts of a CFS technology are discussed according to six standard impact categories, which includes the global warming potential and the total use of primary energy. The study is based on a detailed cradle to gate life cycle analysis of a real case study, and discusses the impacts of both structural and non-structural components of CFS constructions. As a useful frame of reference, this work compares the environmental impacts of 1 m 2 of walls and floors of CFS technology with those of cross laminated timber, which is spreading as innovative off-site technology for the development of nearly zero energy buildings, and a conventional reinforced masonry technology, which is largely adopted in the Italian construction sector. The paper concludes with the necessity to optimize structural systems to reduce the overall embodied carbon impacts.
Keywords: life cycle analysis; cold formed steel; cross laminate timber; net zero; embodied carbon; greenhouse gases (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/2/586/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/2/586/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:2:p:586-:d:1024627
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().