EconPapers    
Economics at your fingertips  
 

Insight into the Effect of Natural Fracture Density in a Shale Reservoir on Hydraulic Fracture Propagation: Physical Model Testing

Jihuan Wu, Xuguang Li and Yu Wang ()
Additional contact information
Jihuan Wu: Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, China
Xuguang Li: Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110034, China
Yu Wang: Beijing Key Laboratory of Urban Underground Space Engineering, Department of Civil Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Energies, 2023, vol. 16, issue 2, 1-17

Abstract: Here, laboratory tests were conducted to examine the effects of natural fracture density (NFD) on the propagation of hydraulic fracture (HF), HF and natural fracture (NF) interaction, and the formation of the stimulated reservoir volume (SRV). Laboratory methods were proposed to prepare samples with dense, medium and spare discrete orthogonal fracture networks. After conducting a true triaxial hydraulic fracturing experiment on the synthetic blocks, the experimental results were analyzed by qualitative failure morphology descriptions, and the quantitative analysis used two proposed new indices. On the pump pressure profiles, it reflected the non-linear interactions between HFs and NFs well. For rock blocks with a dense DFN density, pump pressure curves present fluctuation shape and the degree of interaction between HF and NF is strong; however, for model blocks with a sparse DFN density, the pump pressure curves present a sudden drop shape. In addition, different propagation behaviors of NFs—offset, divert, branch, and cross NF—can be observed from the fractured model blocks. By using a proposed index of “ P-SRV ”, the relationship between NFD and the fracturing effectiveness was further confirmed. Furthermore, the most striking finding is that mixed mode I–II and I–III fracture types can be formed in the naturally fractured model blocks. The experimental results are beneficial for grasping the influential mechanism of NFD on the propagation of HF and for developing more accurate and full 3D-coupled simulation models for unconventional oil and gas development.

Keywords: hydraulic fracturing; fracture network density; shale reservoir; hydraulic fracture propagation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/2/612/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/2/612/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:2:p:612-:d:1025147

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:612-:d:1025147