A Novel Three-Layer Symmetry Winding Configuration for Five-Phase Motor
Zhengmeng Liu (),
Wenxuan Li and
Guohai Liu
Additional contact information
Zhengmeng Liu: Department of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Wenxuan Li: Department of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Guohai Liu: Department of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Energies, 2023, vol. 16, issue 2, 1-11
Abstract:
This paper presents a new three-layer, five-phase winding configuration theory of unconventional slot-pole combinations by each layer of winding for a phase vector correction, three layers of winding superimposed together to achieve the results of three-phase symmetry. Since the single-layer unconventional winding has to have an empty slot to meet its symmetry, based on the characteristics of single-layer winding, the unconventional winding design is carried out. Based on the simulation comparison between the single-layer unconventional winding and double-layer unconventional winding, a three-layer, nine-phase unconventional winding is proposed, which is based on the theory of single-layer unconventional winding, and three layers are staggered and stacked to realize nine-phase winding, which not only increases the utilization rate of the winding slot but also improves the fault tolerance performance. In addition, a 105-slot, 20-pole, three-layer, five-phase motor is proposed for a winding configuration and performance analysis to achieve both low torque pulsation and high fault tolerance.
Keywords: winding configuration; five-phase motor; PM-assisted synchronous reluctance motor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/2/682/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/2/682/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:2:p:682-:d:1027359
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().