EconPapers    
Economics at your fingertips  
 

A Method of Vibration Measurement with the Triboelectric Sensor during Geo-Energy Drilling

Rui Li, He Huang and Chuan Wu ()
Additional contact information
Rui Li: State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
He Huang: Powerchina Hubei Electric Engineering Co., Ltd., Wuhan 430040, China
Chuan Wu: Faculty of Mechanical and Electronic Information, China University of Geosciences, Wuhan 430074, China

Energies, 2023, vol. 16, issue 2, 1-10

Abstract: In the process of geo-energy drilling, the real-time vibration measurement of drill pipes is of significance for an understanding of the downhole conditions and the properties of rock. However, the vibration sensors used in downhole areas at present require additional power sources, such as batteries, and replacing the batteries would significantly reduce production efficiency and increase costs. In our work, a new vibration measurement method using a triboelectric nanogenerator is proposed which will synchronously achieve axial and lateral vibration, and also simultaneously be self-powered. The triboelectric nanogenerator is mainly made of nanomaterials, such as polyimide film and polytetrafluoroethylene (PTFE), and depends on the pulse signal generated by the contact of the two friction layers to measure the vibration frequency. Axial vibration tests show that the output voltage signal amplitude is approximately 3 V, the measurement range is from 0 to 9 Hz, the measurement error is less than 4%, and the maximum output power is 5.63 uW. Additionally, the lateral vibration tests show that the output voltage signal amplitude is approximately 2.5 V, the measurement range is from 0 to 6.8 Hz, the measurement error is less than 6%, and the maximum output power is 4.01 uW. The nanogenerator can typically work in an environment where the temperature is less than 145 °C and the relative humidity is less than 90%.

Keywords: triboelectric nanogenerator; self-powered; sensor; vibration measurement (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/2/770/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/2/770/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:2:p:770-:d:1030052

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:770-:d:1030052