Power Planning for a Reliable Southern African Regional Grid
Nomihla Wandile Ndlela (),
Innocent Ewean Davidson and
Katleho Moloi
Additional contact information
Nomihla Wandile Ndlela: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa
Innocent Ewean Davidson: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa
Katleho Moloi: Department of Electrical Power Engineering, Durban University of Technology, Durban 4000, South Africa
Energies, 2023, vol. 16, issue 3, 1-21
Abstract:
Southern Africa has suffered from multiple power disruptions in the past decade due to inadequate electrical generation capacity, as well as load developments in locations that were not suitably planned for. Southern African countries are able to have reliable, sustainable, and efficient electrical power grids. The use of power interconnections for exchange power, especially for long-distance transmission networks, is important. Installing a suitable high-voltage alternating current (HVAC) with a high-voltage direct current (HVdc) will improve the active–reactive power compensation when transmitting electrical power over long distances (when transmitting bulk power is possible). Flexible alternating current transmission system (FACTS) devices are typically combinations of shunt and series converters. These approaches are capable of improving the power stability and voltage while allowing power to be transferred with minimal losses to an alternating current transmission system for the power exchange. In this article, two HVDC line-commutated converter (LCC) links, i.e., Angola–Namibia and Aggeneys–Kokerboom, were applied to minimize losses from 2657.43 to 2120.91 MW, with power setpoints of 1000 and 600 MW, respectively. The 2500 and 475 MVAr SVCs were used to control the voltage instabilities at Namibia and Mozambique substations, respectively. The use of HVdc to reduce losses and FACTS devices to enhance controllability and power transfer is extremely effective, particularly in long transmission lines transporting bulk power.
Keywords: electric grid reliability; flexible AC transmission system; high-voltage direct current; power exchange; power interconnections (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1028/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1028/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1028-:d:1038730
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().