Hybrid Propulsion Efficiency Increment through Exhaust Energy Recovery—Part 1: Radial Turbine Modelling and Design
Emiliano Pipitone,
Salvatore Caltabellotta (),
Antonino Sferlazza and
Maurizio Cirrincione
Additional contact information
Emiliano Pipitone: Department of Engineering, University of Palermo, 90128 Palermo, Italy
Salvatore Caltabellotta: Department of Engineering, University of Palermo, 90128 Palermo, Italy
Antonino Sferlazza: Department of Engineering, University of Palermo, 90128 Palermo, Italy
Maurizio Cirrincione: School of Engineering and Physics, University of the South Pacific, Suva, Fiji Islands
Energies, 2023, vol. 16, issue 3, 1-25
Abstract:
The efficiency of Hybrid Electric Vehicles (HEVs) may be substantially increased if the energy of the exhaust gases, which do not complete the expansion inside the cylinder of the internal combustion engine, is efficiently recovered by means of a properly designed turbogenerator and employed for vehicle propulsion; previous studies, carried out by the same authors of this work, showed a potential hybrid vehicle fuel efficiency increment up to 15% by employing a 20 kW turbine on a 100 HP rated power thermal unit. The innovative thermal unit here proposed is composed of a supercharged engine endowed with a properly designed turbogenerator, which comprises two fundamental elements: an exhaust gas turbine expressly designed and optimized for the application, and a suitable electric generator necessary to convert the recovered energy into electric energy, which can be stored in the on-board energy storage system of the vehicle. In these two parts, the realistic efficiency of the innovative thermal unit for hybrid vehicle is evaluated and compared to a traditional turbocharged engine. In Part 1, the authors present a model for the prediction of the efficiency of a dedicated radial turbine, based on a simple but effective mean-line approach; the same paper also reports a design algorithm, which, owing to some assumptions and approximations, allows a fast determination of the proper turbine geometry for a given design operating condition. It is worth pointing out that, being optimized for quasi-steady power production, the exhaust gas turbine considered is quite different from the ones commonly employed for turbocharging application; for this reason, and in consideration of the required power size, such a turbine is not available on the market, nor has its development been previously carried out in the scientific literature. In the Part 2 paper, a radial turbine geometry is defined for the thermal unit previously calculated, employing the design algorithm described in Part 1; the realistic energetic advantage that could be achieved by the implementation of the turbogenerator on a hybrid propulsion system is evaluated through the performance prediction model under the different operating conditions of the thermal unit. As an overall result, it was estimated that, compared to a reference traditional turbocharged engine, the turbocompound system could gain vehicle efficiency improvement between 3.1% and 17.9%, depending on the output power level, while an average efficiency increment of 10.9% was determined for the whole operating range.
Keywords: hybrid vehicle; compound engine; exhaust gas turbine; exhaust energy recovery (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1030/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1030/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1030-:d:1038822
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().