EconPapers    
Economics at your fingertips  
 

Design and Analysis of 15 MW SPM Vernier Generator for Direct-Drive Wind Turbine Applications

Abdur Rehman and Byungtaek Kim ()
Additional contact information
Abdur Rehman: Department of Electrical Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
Byungtaek Kim: Department of Electrical Engineering, Kunsan National University, Gunsan 54150, Republic of Korea

Energies, 2023, vol. 16, issue 3, 1-14

Abstract: This paper presents the design and an analysis of a surface PM vernier generator (SPMVG) for MW-scale direct-drive (DD) wind turbine application. An SPMVG has the advantage of higher torque density; however, especially at higher power ratings with increased electrical loadings, the power factor worsens and there are some serious concerns including magnetic saturation of cores and PM demagnetization. These issues are directly related to machine design parameters such as PM dimensions, applied electrical loading, slot geometry and the choice of slot–pole combination. It is determined that depending on the PM thickness and a few other design variables, each slot–pole combination has an optimal value of specific electrical loading. The use of the optimal value of specific electrical loading ensures that the machine is not saturated, the performance is optimum and the power factor is not unnecessarily degraded. Moreover, under certain design constraints, design criteria are developed that ensure the proper choice of various entailed design variables. By using the developed design criteria, the trends of various electromagnetic performances with variation in the slot–pole combination are discussed. The obtained trends clearly show that each slot–pole combination offers a certain torque density and power factor; thus, it serves as a guide for the selection of the slot–pole combination considering the required torque density and/or certain power factor limit. Finally, by using the developed design approach, an SPMVG for rated power of 15 MW is designed; the design objectives are to maximize torque per volume with a power factor limit of 0.4. Moreover, the various aspects of the performances of the designed SPMVG are comprehensively compared against a conventional PM DD 15 MW generator.

Keywords: design; direct drive; MW scale; magnetic saturation; power factor; PM vernier; specific electric loading; torque per volume; wind generator (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1094/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1094/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1094-:d:1040697

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1094-:d:1040697