EconPapers    
Economics at your fingertips  
 

Aerodynamic Optimization of Trailing-Edge-Serrations for a Wind Turbine Blade Using Taguchi Modified Additive Model

Khaoula Qaissi, Omer Elsayed (), Mustapha Faqir and Elhachmi Essadiqi
Additional contact information
Khaoula Qaissi: LERMA Lab, Faculty Engineering and Architecture, School of Aerospace and Automotive Engineering, Université I Rabat, Campus UIR Parc Technopolis Rocade, Rabat-Sale, Sala Al Jadida 11100, Morocco
Omer Elsayed: LERMA Lab, Faculty Engineering and Architecture, School of Aerospace and Automotive Engineering, Université I Rabat, Campus UIR Parc Technopolis Rocade, Rabat-Sale, Sala Al Jadida 11100, Morocco
Mustapha Faqir: LERMA Lab, Faculty Engineering and Architecture, School of Aerospace and Automotive Engineering, Université I Rabat, Campus UIR Parc Technopolis Rocade, Rabat-Sale, Sala Al Jadida 11100, Morocco
Elhachmi Essadiqi: LERMA Lab, Faculty Engineering and Architecture, School of Aerospace and Automotive Engineering, Université I Rabat, Campus UIR Parc Technopolis Rocade, Rabat-Sale, Sala Al Jadida 11100, Morocco

Energies, 2023, vol. 16, issue 3, 1-21

Abstract: For the rotor, achieving relatively high aerodynamic performance in specific wind conditions is a long-term goal. Inspired by the remarkable flight characteristics of owls, an optimal trailing edge serration design is investigated and proposed for a wind turbine rotor blade. Fluid flow interaction with the proposed serrations is explored for different wind conditions. The result is supported by subsequent validation with three-dimensional numerical tools. The present work employs a statistical-numerical method to predict and optimize the shape of the serrations for maximum aerodynamic improvement. The optimal combination is found using the Taguchi method with three factors: Amplitude, wavelength, and serration thickness. The viability of the solution on an application is assessed using the Weibull distribution of wind in three selected regions. Results show that the presence of serration is capable of improving the annual power generation in all the investigated cities by up to 12%. The rated speed is also shifted from 10 m/s to 8 m/s for most configurations. Additionally, all configurations show similar trends for the instantaneous torque, where an increase is observed in pre-rated speed, whereas a decrease is noticed in the post-rated speed region. A look at the flow field pattern for the optimal design in comparison with the clean blade shows that the modified blade is able to generate more lift in the pre-stall region, while for the post-stall region, early separation and increased wake dominate the flow.

Keywords: wind turbine; serrations; CFD; Taguchi; weibull; torque (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1099/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1099/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1099-:d:1040793

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1099-:d:1040793