EconPapers    
Economics at your fingertips  
 

Experimental Analysis of Hysteresis in the Motion of a Two-Input Piezoelectric Bimorph Actuator

Dariusz Grzybek
Additional contact information
Dariusz Grzybek: Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Energies, 2023, vol. 16, issue 3, 1-17

Abstract: This article presents a comparison of hysteresis courses in the motion of a two-input actuator (bimorph) and hysteresis in the motion of a single-input actuator (unimorph). The comparison was based on the results of laboratory and numerical experiments, the subject of which was an actuator built of three layers: a carrier layer from a glass-reinforced epoxy laminate and two piezoelectric layers from Macro Fiber Composite. The layers were glued together, and electrodes in the Macro Fiber Composite layers were connected to a system that included an analogue/digital board and a voltage amplifier. The main purpose of this research was to compare the characteristic points of the hysteresis curves of the displacement of the bimorph actuator with the characteristic points of the hysteresis curves of the unimorph actuator. Based on the research results, it was noticed that, in the bimorph, the maximum hysteresis and mean hysteresis values increase faster than the maximum displacement of a beam tip. However, values of characteristic input voltages for hysteresis loops—voltage corresponding to a maximum displacement of the actuator beam tip and voltage corresponding to maximum hysteresis—are almost the same for the bimorph and unimorph. From a practical point of view, it was noticed that the unimorph is a better choice compared to the bimorph in applications in which high changes in frequencies of input voltages appear.

Keywords: piezoelectric material; macro fiber composite; two-input actuator; single-input actuator; hysteresis loop (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1198/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1198/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1198-:d:1043540

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1198-:d:1043540