Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles
Vishnu P. Sidharthan,
Yashwant Kashyap () and
Panagiotis Kosmopoulos ()
Additional contact information
Vishnu P. Sidharthan: Department of Electrical and Electronics Engineering, National Institute of Technology, Surathkal, Mangaluru 575025, Karnataka, India
Yashwant Kashyap: Department of Electrical and Electronics Engineering, National Institute of Technology, Surathkal, Mangaluru 575025, Karnataka, India
Panagiotis Kosmopoulos: Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece
Energies, 2023, vol. 16, issue 3, 1-26
Abstract:
The energy utilization of the transportation industry is increasing tremendously. The battery is one of the primary energy sources for a green and clean mode of transportation, but variations in driving profiles (NYCC, Artemis Urban, WLTP class-1) and higher C-rates affect the battery performance and lifespan of battery electric vehicles (BEVs). Hence, as a singular power source, batteries have difficulty in tackling these issues in BEVs, highlighting the significance of hybrid-source electric vehicles (HSEVs). The supercapacitor (SC) and photovoltaic panels (PVs) are the auxiliary power sources coupled with the battery in the proposed hybrid electric three-wheeler (3W). However, energy management strategies (EMS) are critical to ensure optimal and safe power allocation in HSEVs. A novel adaptive Intelligent Hybrid Source Energy Management Strategy (IHSEMS) is proposed to perform energy management in hybrid sources. The IHSEMS optimizes the power sources using an absolute energy-sharing algorithm to meet the required motor power demand using the fuzzy logic controller. Techno-economic assessment wass conducted to analyze the effectiveness of the IHSEMS. Based on the comprehensive discussion, the proposed strategy reduces peak battery power by 50.20% compared to BEVs. It also reduces the battery capacity loss by 48.1%, 44%, and 24%, and reduces total operation cost by 60%, 43.9%, and 23.68% compared with standard BEVs, state machine control (SMC), and frequency decoupling strategy (FDS), respectively.
Keywords: absolute energy sharing; electric vehicle; hybrid source energy management strategy; supercapacitor; techno-economic analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1214/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1214/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1214-:d:1044164
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().