EconPapers    
Economics at your fingertips  
 

Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles

Vishnu P. Sidharthan, Yashwant Kashyap () and Panagiotis Kosmopoulos ()
Additional contact information
Vishnu P. Sidharthan: Department of Electrical and Electronics Engineering, National Institute of Technology, Surathkal, Mangaluru 575025, Karnataka, India
Yashwant Kashyap: Department of Electrical and Electronics Engineering, National Institute of Technology, Surathkal, Mangaluru 575025, Karnataka, India
Panagiotis Kosmopoulos: Institute for Environmental Research and Sustainable Development, National Observatory of Athens (IERSD/NOA), 15236 Athens, Greece

Energies, 2023, vol. 16, issue 3, 1-26

Abstract: The energy utilization of the transportation industry is increasing tremendously. The battery is one of the primary energy sources for a green and clean mode of transportation, but variations in driving profiles (NYCC, Artemis Urban, WLTP class-1) and higher C-rates affect the battery performance and lifespan of battery electric vehicles (BEVs). Hence, as a singular power source, batteries have difficulty in tackling these issues in BEVs, highlighting the significance of hybrid-source electric vehicles (HSEVs). The supercapacitor (SC) and photovoltaic panels (PVs) are the auxiliary power sources coupled with the battery in the proposed hybrid electric three-wheeler (3W). However, energy management strategies (EMS) are critical to ensure optimal and safe power allocation in HSEVs. A novel adaptive Intelligent Hybrid Source Energy Management Strategy (IHSEMS) is proposed to perform energy management in hybrid sources. The IHSEMS optimizes the power sources using an absolute energy-sharing algorithm to meet the required motor power demand using the fuzzy logic controller. Techno-economic assessment wass conducted to analyze the effectiveness of the IHSEMS. Based on the comprehensive discussion, the proposed strategy reduces peak battery power by 50.20% compared to BEVs. It also reduces the battery capacity loss by 48.1%, 44%, and 24%, and reduces total operation cost by 60%, 43.9%, and 23.68% compared with standard BEVs, state machine control (SMC), and frequency decoupling strategy (FDS), respectively.

Keywords: absolute energy sharing; electric vehicle; hybrid source energy management strategy; supercapacitor; techno-economic analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1214/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1214/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1214-:d:1044164

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1214-:d:1044164