EconPapers    
Economics at your fingertips  
 

Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins

Wenwen Ye, Dourna Jamshideasli and Jay M. Khodadadi ()
Additional contact information
Wenwen Ye: Department of Mechanical Engineering, Auburn University, 1418 Wiggins Hall, Auburn, AL 36849-5341, USA
Dourna Jamshideasli: Department of Mechanical Engineering, Auburn University, 1418 Wiggins Hall, Auburn, AL 36849-5341, USA
Jay M. Khodadadi: Department of Mechanical Engineering, Auburn University, 1418 Wiggins Hall, Auburn, AL 36849-5341, USA

Energies, 2023, vol. 16, issue 3, 1-83

Abstract: Analytical, computational and experimental investigations directed at improving the performance of latent heat thermal energy storage systems that utilize high thermal conductivity fins in direct contact with phase change materials are reviewed. Researchers have focused on waste heat recovery, thermal management of buildings/computing platforms/photovoltaics/satellites and energy storage for solar thermal applications. Aluminum (including various alloys), brass, bronze, copper, PVC, stainless steel and steel were the adopted fin materials. Capric-palmitic acid, chloride mixtures, dodecanoic acid, erythritol, fluorides, lauric acid, naphthalene, nitrite and nitrate mixtures, paraffins, potassium nitrate, salt hydrates, sodium hydrate, stearic acid, sulfur, water and xylitol have been the adopted fusible materials (melting or fusion temperature T m range of −129.6 to 767 °C). Melting and solidification processes subject to different heat exchange operating conditions were investigated. Studies of thawing have highlighted the marked role of natural convection, exhibiting that realizing thermally unstable fluid layers promote mixing and expedited melting. Performance of the storage system in terms of the hastened charge/discharge time was strongly affected by the number of fins (or fin-pitch) and fin length, in comparison to fin thickness and fin orientation. Strength of natural convection, which is well-known to play an important role on thawing, is diminished by introduction of fins. Consequently, a designer must consider suppression of buoyancy and the extent of sacrificed PCM in selecting the optimum positions and orientation of the fins. Complex fin shapes featuring branching arrangements, crosses, Y-shapes, etc. are widely replacing simple planar fins, satisfying the challenge of forming short-distance conducting pathways linking the temperature extremes of the storage system.

Keywords: extended surfaces; fins; fusible materials; melting; phase change materials; phase transformation; solidification; thermal conductivity enhancers (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1277/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1277/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1277-:d:1046084

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1277-:d:1046084