Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks
Julián Alejandro Vega-Forero,
Jairo Stiven Ramos-Castellanos and
Oscar Danilo Montoya ()
Additional contact information
Julián Alejandro Vega-Forero: Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Jairo Stiven Ramos-Castellanos: Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Oscar Danilo Montoya: Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
Energies, 2023, vol. 16, issue 3, 1-35
Abstract:
This article addresses the problem of the optimal selection of conductors in asymmetric three-phase distribution networks from a combinatorial optimization perspective, where the problem is represented by a mixed-integer nonlinear programming (MINLP) model that is solved using a master-slave (MS) optimization strategy. In the master stage, an optimization model known as the generalized normal distribution optimization (GNDO) algorithm is proposed with an improvement stage based on the vortex search algorithm (VSA). Both algorithms work with discrete-continuous coding that allows us to represent the locations and gauges of the different conductors in the electrical distribution system. For the slave stage, the backward/forward sweep (BFS) algorithm is adopted. The numerical results obtained in the IEEE 8- and 27-bus systems demonstrate the applicability, efficiency, and robustness of this optimization methodology, which, in comparison with current methodologies such as the Newton metaheuristic algorithm, shows significant improvements in the values of the objective function regarding the balanced demand scenario for the 8- and 27-bus test systems (i.e., 10.30% and 1.40% respectively). On the other hand, for the unbalanced demand scenario, a reduction of 1.43% was obtained in the 27-bus system, whereas no improvement was obtained in the 8-bus grid. An additional simulation scenario associated with the three-phase version of the IEEE33-bus grid under unbalanced operating conditions is analyzed considering three possible load profiles. The first load profile corresponds to the yearly operation under the peak load conduction, the second case is associated with a daily demand profile, and the third operation case discretizes the demand profile in three periods with lengths of 1000 h, 6760 h, and 1000 h with demands of 100%, 60% and 30% of the peak load case. Numerical results show the strong influence of the expected demand behavior on the plan’s total costs, with variations upper than USD/year 260,000.00 between different cases of analysis. All implementations were developed in the MATLAB ® programming environment.
Keywords: combinatorial optimization; distribution systems; conductor selection; energy losses; power flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1311/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1311/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1311-:d:1047537
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().