Role of Non-Adiabatic Capillary Tube in Water Cooler Performance
Lea Di Donato,
Alice Mugnini,
Fabio Polonara () and
Alessia Arteconi
Additional contact information
Lea Di Donato: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy
Alice Mugnini: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy
Fabio Polonara: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy
Alessia Arteconi: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche 1, 60131 Ancona, Italy
Energies, 2023, vol. 16, issue 3, 1-14
Abstract:
In this paper, a numerical model of a capillary tube is developed. The considered expansion device is placed against the suction line at the inlet of the compressor. Wrapping the capillary tube around the suction line allows heat to be recovered by superheating the refrigerant leaving the evaporator. This increases the degree to which the fluid is superheated, preventing liquid droplets from entering the compressor and causing damage. The open-source software PYTHON is used for modelling the non adiabatic capillary tube, and the results are validated by comparing them with experimental tests. This study demonstrates that an accurate contact of the capillary tube with the suction line affects the superheating of the compressor inlet fluid by increasing its temperature by up to 5 degrees and produces an increase in COP of 3–4%. On the other hand, the length of the capillary tube affects the flow rate of the refrigerant circulating in the cycle; in particular, it is noted that a 300% increase in the capillary tube length leads to a decrease in the refrigerant flow rate of up to 50–60%.
Keywords: refrigeration; capillary tube; heat exchanger (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1322/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1322/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1322-:d:1047703
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().