Challenges of Phasing out Emergency Diesel Generators: The Case Study of Lacor Hospital’s Energy Community
Alex Felice (),
Jacopo Barbieri,
Ander Martinez Alonso,
Maarten Messagie and
Thierry Coosemans
Additional contact information
Alex Felice: Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Ixelles, Belgium
Jacopo Barbieri: Technical Department, St. Mary’s Hospital Lacor, Gulu P.O. Box 180, Uganda
Ander Martinez Alonso: Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Ixelles, Belgium
Maarten Messagie: Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Ixelles, Belgium
Thierry Coosemans: Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, 1050 Ixelles, Belgium
Energies, 2023, vol. 16, issue 3, 1-15
Abstract:
Power outages of the electricity grid threaten the proper operation of critical infrastructure such as hospitals. To cope with this problem, emergency diesel generators (DGs) are often used to guarantee continuous and resilient electricity supply, resulting in increased costs and greenhouse gas (GHG) emissions. Thus, this study aims to investigate the economic feasibility of both reducing and replacing emergency diesel generators with solar photovoltaic (PV) systems, battery energy storage systems (BESS) and demand-side management. A mixed-integer quadratically constrained program is used to find the optimal configuration in terms of capacities of new assets, as well as the optimal scheduling of both BESS and flexible loads, that minimises the levelised cost of energy (LCOE). The model is applied to an existing hospital and its surrounding community located in Gulu, Uganda. The results show that full replacement of the DGs will require an additional 500 kWp of PV and 1591 kWh of BESS. This new configuration will decrease LCOE by 26% compared to the actual situation, with a simple payback time of 6.2 years and a reduction of 74% in GHG emissions.
Keywords: energy community; Sub-Saharan Africa; micro-grid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1369/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1369/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1369-:d:1049229
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().