Evaluation of Numerical Methods for Predicting the Energy Performance of Windows
Anatoliy M. Pavlenko () and
Karolina Sadko
Additional contact information
Anatoliy M. Pavlenko: Department of Building Physics and Renewable Energy, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Karolina Sadko: Department of Building Physics and Renewable Energy, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Energies, 2023, vol. 16, issue 3, 1-23
Abstract:
Windows are important structural components that determine the energy efficiency of buildings. A significant parameter in windows technology is the overall heat transfer coefficient, U. This paper analyzes the methods of numerical determination of the U-value, including for windows that use passive technologies to improve thermal performance. The analysis was intended to evaluate the heat flux and temperature distribution across glazed surfaces and the accuracy of traditional approaches to the determination of heat loss through window structures. The results were obtained using the heat flux measurement method described in the international standard ISO 9869-1:2014. The paper shows that the non-uniformity of the heat flux density on a window surface can be as high as 60%, which in turn generates an error in the calculations based on stationary heat transfer conditions.
Keywords: heat transfer; mathematical modelling; windows; window thermal resistance; thermal transmittance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1425/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1425/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1425-:d:1053588
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().