EconPapers    
Economics at your fingertips  
 

Performance of a Heat-Pipe Cooled Concentrated Photovoltaic/Thermoelectric Hybrid System

Mohamed Sabry () and Abdelrahman Lashin
Additional contact information
Mohamed Sabry: Physics Department, College of Applied Science, Umm Al Qura University, Makkah 21955, Saudi Arabia
Abdelrahman Lashin: Physics Department, College of Applied Science, Umm Al Qura University, Makkah 21955, Saudi Arabia

Energies, 2023, vol. 16, issue 3, 1-13

Abstract: Compared to traditional one-sun solar cells, multijunction concentrator cells operating under concentrated solar radiation are advantageous because of their high output and low cooling costs. Such a concentrator PV requires a cooling technique to maintain its performance and efficiency. The performance of a multi-junction concentrator photovoltaic cell of efficiency around 33%, operating under concentrated solar radiation (160–250 sun), has been tested. Heat pipes were used in this study as a fast and efficient way of rejecting heat accumulated in the cells. In this work, the evaporator side of the heat pipe was set in thermal contact with the back side of the solar cell such that the excess heat was transferred efficiently to the other side (condenser side). To positively utilize such excessive heat, two thermoelectric generators were thermally attached to either side of the condenser of the heat pipe, and each was attached to a fin-shaped heat sink. Four different cooling configurations were tested and compared. The net power obtained by this concentrator solar cell employing two types of TEG with different lengths as a cooling alongside two thermoelectric generators for heat-to-electricity conversion was 20% and 17%, corresponding to the long and short heat pipe configurations, respectively, compared to traditional a heat sink only configured at an optical concentration of 230 suns.

Keywords: concentrator photovoltaic; solar concentrators; solar energy; thermoelectric generators; heat pipes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1438/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1438/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1438-:d:1053805

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1438-:d:1053805