EconPapers    
Economics at your fingertips  
 

Crude Oil Pyrolysis Studies: Application to In Situ Superheat Steam Enhanced Oil Recovery

Eric N. Coker, Burl Donaldson (), Brian Hughes and Nadir Yilmaz ()
Additional contact information
Eric N. Coker: Sandia National Laboratories, Albuquerque, NM 87123, USA
Burl Donaldson: Sandia National Laboratories, Albuquerque, NM 87123, USA
Brian Hughes: Energy Analyst LLC, Albuquerque, NM 87123, USA
Nadir Yilmaz: Department of Mechanical Engineering, Howard University, Washington, DC 20059, USA

Energies, 2023, vol. 16, issue 3, 1-11

Abstract: This work focuses on the occurrence and composition of flammable pyrolysis gases which can be expected from stimulation of heavy oil with superheat steam. These gases can have commodity value or be used to fire a conventional boiler to generate steam vapor for superheater feed. Seven oil samples taken from different US locations were tested via thermogravimetric analysis (TGA) with off-gas analysis of light hydrocarbons via mass spectrometry (MS). The samples were heated up to 500 °C at 5 °C/min in a gas flow of moist carbon dioxide and held at 500 °C until no further mass loss was noted. Then, carbonaceous residue was exposed to air at 500 °C to determine enthalpy of combustion by differential scanning calorimetry (DSC). To demonstrate that pyrolysis was indeed occurring and not simple de-volatilization, a high-molecular-weight reagent-grade organic molecule, lactose, was first demonstrated to produce components of interest. After treatment under moist CO 2 at 500 °C, all samples were found to lose around 90% of mass, and the follow-up combustion process with air further reduced the residual mass to between 2% and 12%, which is presumed to be mineral matter and char. The light hydrocarbons methane, ethane, and propane, as well as hydrogen, were detected through MS during pyrolysis of each oil sample. Heavier hydrocarbons were not monitored but are assumed to have evolved, especially during periods where additional mass loss was occurring in the isothermal process, with minimal light hydrocarbon evolution. These results correspond to a possible concept of subsequent in situ combustion drive with or without heat scavenging following high-temperature pyrolysis from in situ superheat steam injection.

Keywords: superheat enhanced oil recovery; thermal heavy oil stimulation; in situ heavy oil upgrade; mass reduction; thermogravimetric analysis (TGA); differential scanning calorimetry (DSC) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/3/1544/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/3/1544/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:3:p:1544-:d:1057446

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1544-:d:1057446