EconPapers    
Economics at your fingertips  
 

Investigations on the Heat Transfer between an Electrical Heating Rod and a Rail for Heated Railway Switch Points

Markus Schladitz (), Robert Adam and Stephan Schlegel
Additional contact information
Markus Schladitz: Chair of High Voltage and High Current Engineering, Faculty of Electrical and Computer Engineering, Institute of Electrical Power Systems and High Voltage Engineering (IEEH), Technische Universität Dresden, 01069 Dresden, Germany
Robert Adam: Chair of High Voltage and High Current Engineering, Faculty of Electrical and Computer Engineering, Institute of Electrical Power Systems and High Voltage Engineering (IEEH), Technische Universität Dresden, 01069 Dresden, Germany
Stephan Schlegel: Chair of High Voltage and High Current Engineering, Faculty of Electrical and Computer Engineering, Institute of Electrical Power Systems and High Voltage Engineering (IEEH), Technische Universität Dresden, 01069 Dresden, Germany

Energies, 2023, vol. 16, issue 4, 1-17

Abstract: Electrical heating rods are a commonly used application for switch point heating in order to keep switch points free from ice and snow. Clamps made of spring steel usually attach the heating rod to the rail. They are localized at certain positions at a distance from each other. Thermal images showed significant temperature differences on the surface of the heating rod depending on the longitudinal position. That might be an indicator of a varying heat transfer due to a changing joint force applied by the clamps. In order to investigate the correlation between the joint force and the heat transfer between the heating rod and rail, the clamping force of newly manufactured heating rod clamps was measured initially. Therefore, a modified tensile test was used. Applied thermal and mechanical loads over a period of 4000 h could reduce the clamping force by 13%. Finally, the correlation between the heat transfer resistance, the joint force and the surface condition was experimentally determined with a heating test setup. Considering only the clamp area, the specific thermal contact resistance will not change due to a change in the joint force. However, surface preconditioning, such as milling or an application of a thermal-conducting paste, is capable of significantly reducing the thermal contact resistance.

Keywords: railway; switch point heating; heat transfer; thermal contact resistance; clamping force; ageing; rail surface condition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/1678/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/1678/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:1678-:d:1061338

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1678-:d:1061338