EconPapers    
Economics at your fingertips  
 

Analysis of Losses in Two Different Control Approaches for S-S Wireless Power Transfer Systems for Electric Vehicle

Abhay Kumar (), Manuele Bertoluzzo (), Rupesh Kumar Jha and Amritansh Sagar
Additional contact information
Abhay Kumar: Department of Industrial Engineering, University of Padova, 35131 Padua, Italy
Manuele Bertoluzzo: Department of Industrial Engineering, University of Padova, 35131 Padua, Italy
Rupesh Kumar Jha: Tata Consultancy Services, Bangalore 560066, India
Amritansh Sagar: Department of Industrial Engineering, University of Padova, 35131 Padua, Italy

Energies, 2023, vol. 16, issue 4, 1-18

Abstract: This paper presents the study and detailed analysis of converter losses at different stages together with the series-series (S-S) compensating coils in wireless power transfer (WPT) systems, via two distinct approaches to control the power converters. The two approaches towards wireless DC–DC power flow control are termed as the Single Active High-Frequency Wireless Power Transfer (SAHFWPT) system and the Dual Active High-Frequency Wireless Power Transfer (DAHFWPT) system. The operation of converters in SAHFWPT and DAHFWPT are controlled by the extended phase shift (EPS) and dual phase shift method respectively. The general schematic of the SAHFWPT system consists of an active bridge and a passive bridge, while the schematic of the DAHFWPT system consists of both active bridges. The efficiency evolutions of ideal SAHFWPT and DAHFWPT are far away from the real ones. Moreover, this article analyzes the operation and losses of the uni-directional power flow of the WPT system, i.e., from the DC bus in the primary side to the battery load in the secondary side. The loss estimation includes high-frequency switching losses, conduction losses, hard turn on and turn off coil losses, etc. Moreover, the efficiency of the WPT system depends on operation of the converter. A 50 W–3600 W Power range system at a resonant frequency of 85 kHz is implemented in MATLAB/SIMULATION to demonstrate the validity of the proposed method.

Keywords: single active bridge; dual active bridge; wireless power transfer; DC–DC converter; converter loss; electrical vehicle (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/1795/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/1795/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:1795-:d:1065327

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1795-:d:1065327