Adaptive Double Kalman Filter Method for Smoothing Wind Power in Multi-Type Energy Storage System
Lei Qin,
Na Sun and
Haiying Dong ()
Additional contact information
Lei Qin: School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Na Sun: Faculty Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China
Haiying Dong: School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Energies, 2023, vol. 16, issue 4, 1-20
Abstract:
At present, in the situation that wind power penetration is increasing year by year, the use of a hybrid energy storage system (HESS) to smooth out wind power fluctuations becomes an effective method. However, the existing control strategy has the problem of inadequate utilization of fluctuating power. In this paper, we propose a control strategy for smoothing wind power fluctuations based on double Kalman filters with adaptive adjustment of the state of charge (SOC). Firstly, considering the wind power’s active power grid constraint, the parameters of the dual Kalman filter are adaptively adjusted according to the original output power to obtain the target grid power synchronously, and the total smoothing command of the energy storage system is determined with the goal of improving the SOC of the lithium battery. On this basis, the SOC of the supercapacitor is considered to be improved, and the adaptive low-pass filter is used for the secondary distribution of the energy storage power command to achieve fine-grained management of the output power of HESS. The final simulation results show that the obtained smoothed wind power satisfies the 1 min and 10 min fluctuation criteria, and the minimum capacity required for lithium batteries is reduced by 0.07 MW·h under the same initial conditions as in the proposed method in this paper; it can use the fluctuating power when the SOC crosses the limit, and has a regulating effect on the SOC of HESS to improve the wind power smoothing ability and realize the stable grid-connection requirement of wind power.
Keywords: wind storage power generation system; hybrid energy storage; management of SOC; Kalman filtering; the stabilization of fluctuations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/1856/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/1856/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:1856-:d:1067202
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().