Load Evaluation for Tower Design of Large Floating Offshore Wind Turbine System According to Wave Conditions
Hyeonjeong Ahn,
Yoon-Jin Ha and
Kyong-Hwan Kim ()
Additional contact information
Hyeonjeong Ahn: Korean Research Institute of Ship & Ocean Engineering, Daejeon 34103, Republic of Korea
Yoon-Jin Ha: Korean Research Institute of Ship & Ocean Engineering, Daejeon 34103, Republic of Korea
Kyong-Hwan Kim: Korean Research Institute of Ship & Ocean Engineering, Daejeon 34103, Republic of Korea
Energies, 2023, vol. 16, issue 4, 1-18
Abstract:
This study entailed a load evaluation for the tower design of a large floating offshore wind turbine system in accordance with the wave conditions. The target model includes the IEA 15 MW reference wind turbine and a semi-submersible VolturnUS-S reference floating offshore wind turbine platform from the University of Maine. The OpenFAST, which is an aero-hydro-servo-elastic fully coupled analysis tool, was used for load analysis. The DLC1.2 and 1.6 were used as the design load cases, and the environmental conditions suitable for the design load cases were cited in the VolturnUS-S platform report. Load evaluation was performed according to time series and FFT results. The findings of the study are as follows: first, in the correlation analysis, the tower-top deflection had the highest correlation, and this further affects nacelle acceleration. Second, the tower-base pitch moment increased with the significant wave height. However, the wave peak period increased until it matched the tower-top deflection frequency and decreased thereafter. Third, the comparison between the normal and severe sea state conditions revealed that the tower-base pitch moments for the two conditions are almost similar, despite the conditions wherein the wave spectral energy differs by a factor of 3.5. Fourth, the tower shape is changed while adjusting the diameter of the tower, and the tower-top and tower-base pitch moments are reviewed using a redesigned tower. Even if the mass is the same, adjusting the diameter of the tower reduces only the pitch moment.
Keywords: fast Fourier transform; floating offshore wind turbine system; semisubmersible; tower-base pitch moment; wave spectral energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/1862/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/1862/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:1862-:d:1067324
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().