EconPapers    
Economics at your fingertips  
 

Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment

Farah Mohammad, Kashif Saleem () and Jalal Al-Muhtadi
Additional contact information
Farah Mohammad: Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh 12372, Saudi Arabia
Kashif Saleem: College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11461, Saudi Arabia
Jalal Al-Muhtadi: Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh 12372, Saudi Arabia

Energies, 2023, vol. 16, issue 4, 1-16

Abstract: Theft of electricity poses a significant risk to the public and is the most costly non-technical loss for an electrical supplier. In addition to affecting the quality of the energy supply and the strain on the power grid, fraudulent electricity use drives up prices for honest customers and creates a ripple effect on the economy. Using data-analysis tools, smart grids may drastically reduce this waste. Smart-grid technology produces much information, including consumers’ unique electricity-use patterns. By analyzing this information, machine-learning and deep-learning methods may successfully pinpoint those who engage in energy theft. This study presents an ensemble-learning-based system for detecting energy theft using a hybrid approach. The proposed approach uses a machine-learning-based ensemble model based on a majority voting strategy. This work aims to develop a smart-grid information-security decision support system. This study employed a theft-detection dataset to facilitate automatic theft recognition in a smart-grid environment (TDD2022). The dataset consists of six separate electricity thefts. The experiments are performed in four different scenarios. The proposed machine-learning-based ensemble model obtained significant results in all scenarios. The proposed ensemble model obtained the highest accuracy of 88%, 87.24%, 94.75%, and 94.70% with seven classes including the consumer type, seven classes excluding the consumer type, six classes including the consumer type, and six classes excluding the consumer type. The suggested ensemble model outperforms the existing techniques in terms of accuracy when the proposed methodology is compared to state-of-the-art approaches.

Keywords: smart grids; cybersecurity; theft detection; network analysis; grid system; internet of things (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/1907/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/1907/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:1907-:d:1068657

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1907-:d:1068657