EconPapers    
Economics at your fingertips  
 

New Pump-In Flowback Model Verification with In-Situ Strain Measurements and Numerical Simulation

Ibrahim Eltaleb () and Mohamed Y. Soliman
Additional contact information
Ibrahim Eltaleb: Department of Petroleum Engineering, The University of Houston, Houston, TX 77023, USA
Mohamed Y. Soliman: Department of Petroleum Engineering, The University of Houston, Houston, TX 77023, USA

Energies, 2023, vol. 16, issue 4, 1-31

Abstract: This study presents an analytical model for estimating minimum horizontal stress in hydraulic fracturing stimulations. The conventional Diagnostic Fracture Injection Test (DFIT) is not practical in ultra-tight formations, leading to the need for pump-in/flowback tests. However, ambiguities in the results of these tests have limited their application. The proposed model is based on the linear diffusivity equation and material balance, which is analytically solved and verified using a commercially available numerical simulator. The model generates a linear graph in which the pressure drop and its derivative are plotted versus the developed solution time function. The closure pressure is determined when the slope of the derivative deviates from linearity. The model was applied to several cycles of field flowback tests and found to eliminate the ambiguity associated with identifying the fracture closure. Furthermore, the minimum In-situ stresses estimated using this approach are verified via downhole strain measurement and synthetic data from a fully 3D commercial fracturing simulator. The proposed technique outperformed other conventional methods in analyzing challenging injection/shut-in tests, showing improved results and reducing uncertainty in estimated fracture parameters. This model is expected to scale down the need for multiple field trials and provide a reliable estimation of minimum stress.

Keywords: DFIT; minifrac; flowback; EGS Collab; in-situ stress (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/1970/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/1970/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:1970-:d:1070704

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1970-:d:1070704