EconPapers    
Economics at your fingertips  
 

Piezoelectric Energy Harvesting Gyroscopes: Comparative Modeling and Effectiveness

Manuel Serrano, Kevin Larkin, Sergei Tretiak and Abdessattar Abdelkefi ()
Additional contact information
Manuel Serrano: Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA
Kevin Larkin: Los Alamos National Laboratory, Los Alamos, NM 87547, USA
Sergei Tretiak: Los Alamos National Laboratory, Los Alamos, NM 87547, USA
Abdessattar Abdelkefi: Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, USA

Energies, 2023, vol. 16, issue 4, 1-21

Abstract: Given its versatility in drawing power from many sources in the natural world, piezoelectric energy harvesting (PEH) has become increasingly popular. However, its energy harvesting capacities could be enhanced further. Here, a mathematical model that accurately simulates the dynamic behavior and energy harvested can facilitate further improvements in the performance of piezoelectric devices. One of the goals of this study is to create a dependable reduced-order model of a multi-purpose gyroscope. This model will make it possible to compute the harvested voltage and electrical power in a semi-analytical manner. The harvested voltage is often modeled as an average value across the whole electrode surface in piezoelectric devices. We propose a model which provides practical insights toward optimizing the performance of the system by considering a spatially varying electric field across the electrode surface length. Our framework allows investigation of the limits of applicability of the modeling assumptions across a range of load resistances. The differential quadrature method (DQM) provides the basis for the suggested numerical solution. The model is also employed to examine energy harvesting under various resistance loads. The newly developed spatially varying model is evaluated for open- and closed-circuit conditions and is proved to be accurate for various values of load resistance that have not previously been considered. The results show that using a spatially varying model is more versatile when modeling the performance of the piezoelectric multifunctional energy harvester. The performance may be accurately captured by the model for load resistances ranging between 10 3 Ω and 10 8 Ω. At optimum load resistance and near 65 KHz, the maximum power output predicted by the spatially varying (SV) model is 1.3 mV, 1.5 mV for the open-circuit (OC) model, and 2.1 mV for the closed circuit (CE) model. At a high-load resistance, the SV and OC models all predict the maximum power output to be 1.9 mV while the CE model predicted the maximum voltage to be 3 mV.

Keywords: piezoelectricity; vibration energy harvesting; electromechanical modeling; gyroscopes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/4/2000/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/4/2000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:4:p:2000-:d:1071901

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:2000-:d:1071901