Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture
Alexander Igolnikov and
Pavel Skripov ()
Additional contact information
Alexander Igolnikov: Department of Physics and Technology, Ural Federal University, 620002 Ekaterinburg, Russia
Pavel Skripov: Institute of Thermal Physics, Ural Branch of RAS, 620016 Ekaterinburg, Russia
Energies, 2023, vol. 16, issue 5, 1-15
Abstract:
This article is devoted to the study of the phenomenon of superheating of partially miscible mixtures having a lower critical solution temperature and the thermal effect accompanying the relaxation of an unstable mixture, within the framework of the problem of high-density heat flux removal. The study was carried out by using the method of the controlled pulse heating of a platinum wire probe. The characteristic heating time was from 0.2 to 180 ms. The superheating degree of the mixture relative to the diffusion spinodal exceeded 100 K. The heat flux density from the heater surface reached 13.7 MW/m 2 . The object of research was an aqueous solution of polypropylene glycol-425 (PPG-425). The obtained results clearly indicate that such mixtures can be used as coolants in processes where the possibility of powerful local heat release cannot be excluded. They also form the basis for expanding the phase diagram by involving in the study not-fully-stable and unstable states of the mixture.
Keywords: diffusion spinodal; pulse heating; binary mixture; heat transfer enhancement; liquid–liquid phase separation; lower critical solution temperature; liquid–vapour critical curve (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2109/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2109/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2109-:d:1076262
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().