EconPapers    
Economics at your fingertips  
 

Experimental Comparison of Functionality between the Main Types of Methane Measurement Sensors in Mines

José Luis Lorenzo-Bayona, David León (), Isabel Amez, Blanca Castells and Ljiljana Medic
Additional contact information
José Luis Lorenzo-Bayona: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
David León: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
Isabel Amez: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
Blanca Castells: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain
Ljiljana Medic: Department of Energy and Fuels, E.T.S. Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Ríos Rosas 21, 28003 Madrid, Spain

Energies, 2023, vol. 16, issue 5, 1-24

Abstract: In recent years, coal mine methane measurement techniques in mines have been gaining importance as poor firedamp control in work can cause the interruption of production and even fatal accidents. Since there is currently a variety of methane measurement equipment with different functional characteristics and measurement principles, a study is needed to indicate which type of equipment has the highest degree of confidence. This research presents the results of a study carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid that aims to analyze the reliability of methane detection systems used in underground mining. Therefore, a series of portable and non-portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations, such as time of response, dust effect, temperature, pressure, etc. The test equipment is usually the one used in the certification and calibration of these devices, subject to the LOM quality system. The results of these tests allowed for defining a marking system that led to a ranking of the tested methane detectors in order to find the advantages and disadvantages of each type. From the performed tests, a summary of the main sources of sensor inaccuracy was reported. It was found that catalytic sensors might present significant deviations when testing high concentrations in short periods of time or low concentrations during long periods of time. On the other hand, devices with an interferometric sensor can be unreliable as the measures are very sensitive to changes in environmental conditions, and optical sensors present longer response times than catalytic sensors.

Keywords: ATEX standards; gas detector; methane meter; mining safety (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2207/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2207/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2207-:d:1079587

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2207-:d:1079587