Current Status and Development Direction of Low-Carbon Exploitation Technology for Heavy Oil
Haifeng Li,
Qiang Wang () and
Yongbin Wu
Additional contact information
Haifeng Li: University of Chinese Academy of Sciences, Beijing 100048, China
Qiang Wang: Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China
Yongbin Wu: PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
Energies, 2023, vol. 16, issue 5, 1-15
Abstract:
With the strategic goal of “carbon peaking and carbon neutral” in China, new requirements are also put forward for the thermal recovery of heavy oil. In view of the problems of excessive greenhouse gas emission, low steam utilization rate, poor economic efficiency, and limited reservoir application of steam stimulation replacement technology in China, the emerging technologies of medium- and low-temperature thermal fluid, solvent-assisted high-temperature steam injection, solvent-based medium- and low-temperature waterless recovery and in situ electric heating-assisted recovery are discussed in terms of technical principles, technical parameters, experimental/field effects, and technical and economic potential. The technical principles, technical parameters, experimental/field results, and techno-economic potential of low-carbon heavy oil recovery technologies are summarized and future development directions and trends are anticipated. The study’s findings indicate that some of the technologies that have been tested in the field, such as HWVP, EMVAPEX, AH-VAPEX, LASER, and ESEIEH, can be developed by relying on the original well groups for production and can reduce greenhouse gas emissions, such as CO 2 , by about 80% and improve crude oil recovery by 5% to 10%, while the technologies concerned have outstanding effects on increasing oil production rate and lowering upfront capital investment. Some of the technologies that have been tested significantly increase oil production rate, lower initial capital expenditure, and enable solvent recycling, among other things. Among them, COBEEOR and N-SOLV technologies can also lower the amount of asphaltene in the output crude oil, enhance the API of the recovered crude oil, and provide strong economic advantages. CSP, CHSI, and hot water solvent injection were tested in indoor two-dimensional and three-dimensional experiments to validate their feasibility, while CO 2 , propane, and butane solvents were initially screened and some of the technologies’ mechanisms were revealed to lay the groundwork for pilot projects. The executive summary of the research findings will serve as a guide for future low-carbon extraction technology research and development in China.
Keywords: heavy oil recovery; technical status; summarization; low carbon; development direction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2219/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2219/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2219-:d:1080006
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().