EconPapers    
Economics at your fingertips  
 

Design and Optimization of a Magnetic Field Exciter for Controlling Magnetorheological Fluid in a Hybrid Soft-Rigid Jaw Gripper

Marcin Białek () and Cezary Jędryczka ()
Additional contact information
Marcin Białek: Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland
Cezary Jędryczka: Division of Electrical Machines and Mechatronics, Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznan, Poland

Energies, 2023, vol. 16, issue 5, 1-21

Abstract: The paper deals with an optimization of a magnetic circuit of the field exciter designed to control magnetorheological fluid (MRF) in a hybrid soft–rigid jaw gripper. The case discussed includes sealing of the MRF inside a cushion made of thermoplastic polyurethane (TPU). The shear stress distributions in the MRF upon magnetic field excitation have been analyzed for various permanent magnet, yoke, and air gap dimensions. In the developed numerical model of the magnetic field exciter, the geometry of the considered domain was parameterized. As part of the simulation study, more than 4600 variants of the magnetic circuit were analyzed, for which the shear stress distribution in the MRF inside the cushion was determined. The numerical model has been implemented in the Ansys Electronics Desktop 2020 finite element method (FEM) package. Research was focused on finding dimensions of the magnetic circuit that ensure the desired distribution of the shear stress in the MRF inside the cushion. The undeformed and deformed by axial plunging of the pin cushions geometries have been analyzed. The evaluation criteria were the achievement of the highest possible value of the shear stress and the uniformity of its distribution in the given cross-sectional area of the MRF inside the cushion. The main objective of the analysis was to design the magnetic field exciter for application in the jaw pads of a gripper using MRF cushions. Through research, a suitable configuration tailored to the needs of the application was proposed.

Keywords: magnetorheological fluid (MRF); soft–rigid gripper; thermoplastic polyurethane (TPU); magnetic field exciter; finite element method (FEM) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2299/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2299/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2299-:d:1082326

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2299-:d:1082326