Experiments and Modeling of Solid–Solid Phase Change Material-Loaded Plaster to Enhance Building Energy Efficiency
Girolama Airò Farulla (),
Vincenza Brancato,
Valeria Palomba,
Yannan Zhang,
Giuseppe E. Dino and
Andrea Frazzica ()
Additional contact information
Girolama Airò Farulla: CNR (Consiglio Nazionale delle Ricerche)—ITAE (Istituto di Tecnologie Avanzate per l’Energia) “Nicola Giordano”, Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Vincenza Brancato: CNR (Consiglio Nazionale delle Ricerche)—ITAE (Istituto di Tecnologie Avanzate per l’Energia) “Nicola Giordano”, Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Valeria Palomba: CNR (Consiglio Nazionale delle Ricerche)—ITAE (Istituto di Tecnologie Avanzate per l’Energia) “Nicola Giordano”, Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Yannan Zhang: CNR (Consiglio Nazionale delle Ricerche)—ITAE (Istituto di Tecnologie Avanzate per l’Energia) “Nicola Giordano”, Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Giuseppe E. Dino: CNR (Consiglio Nazionale delle Ricerche)—ITAE (Istituto di Tecnologie Avanzate per l’Energia) “Nicola Giordano”, Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Andrea Frazzica: CNR (Consiglio Nazionale delle Ricerche)—ITAE (Istituto di Tecnologie Avanzate per l’Energia) “Nicola Giordano”, Salita S. Lucia Sopra Contesse 5, 98126 Messina, Italy
Energies, 2023, vol. 16, issue 5, 1-27
Abstract:
In this paper, cement mortar IN200 integrated with solid–solid PlusIce X25 commercial PCM was fully characterized for the first time via experimental tests and numerical simulations. An experimental setup was designed and built to evaluate the thermal performance of the composite. Experimental results confirmed the expected advantages of the PCM-loaded plaster in terms of inner surface temperature, inbound heat flux reduction, and the enhanced damping effect on the average temperature. The experimental results were used to validate and calibrate a finite element model implemented in COMSOL Multiphysics ® 5.6. The model was adopted to carry out a parametric analysis assessing the influence of PCM mass fraction, phase transition temperature, and PCM mortar thickness. The composite thickness was the most influential parameter, resulting in an energy saving increase from 3.29% to 72.72% as it was increased from 10 mm to 30 mm. Moreover, the model was used in a set of dynamic simulations, reproducing real Mediterranean climatic conditions to capture the transition process for a long period in buildings. The PCM mortar located on the interior side exhibited the highest reduction in both heat flux and inner surface temperature, representing a simple approach to achieving the best thermal comfort conditions.
Keywords: composite plaster; solid–solid phase change material; energy efficiency building (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2384/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2384/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2384-:d:1085401
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().