EconPapers    
Economics at your fingertips  
 

Local Renewable Energy Communities: Classification and Sizing

Bruno Canizes (), João Costa, Diego Bairrão and Zita Vale
Additional contact information
Bruno Canizes: GECAD Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI—Intelligent Systems Associate Laboratory, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
João Costa: School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Diego Bairrão: School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Zita Vale: GECAD Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI—Intelligent Systems Associate Laboratory, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

Energies, 2023, vol. 16, issue 5, 1-26

Abstract: The transition from the current energy architecture to a new model is evident and inevitable. The coming future promises innovative and increasingly rigorous projects and challenges for everyone involved in this value chain. Technological developments have allowed the emergence of new concepts, such as renewable energy communities, decentralized renewable energy production, and even energy storage. These factors have incited consumers to play a more active role in the electricity sector and contribute considerably to the achievement of environmental objectives. With the introduction of renewable energy communities, the need to develop new management and optimization tools, mainly in generation and load management, arises. Thus, this paper proposes a platform capable of clustering consumers and prosumers according to their energy and geographical characteristics to create renewable energy communities. Thus, this paper proposes a platform capable of clustering consumers and prosumers according to their energy and geographical characteristics to create renewable energy communities. Moreover, through this platform, the identification (homogeneous energy communities, mixed energy communities, and self-sufficient energy communities) and the size of each community are also obtained. Three algorithms are considered to achieve this purpose: K-means, density-based spatial clustering of applications with noise, and linkage algorithms (single-link, complete-link, average-link, and Wards’ method). With this work, it is possible to verify each algorithm’s behavior and effectiveness in clustering the players into communities. A total of 233 members from 9 cities in the northern region of Portugal (Porto District) were considered to demonstrate the application of the proposed platform. The results demonstrate that the linkage algorithms presented the best classification performance, achieving 0.631 by complete-ink in the Silhouette score, 2124.174 by Ward’s method in the Calinski-Harabasz index, and 0.329 by single-link on the Davies-Bouldin index. Additionally, the developed platform demonstrated adequacy, versatility, and robustness concerning the classification and sizing of renewable energy communities.

Keywords: classification and sizing; clustering algorithms; clustering evaluation metrics; decentralized renewable energy generation; renewable energy communities (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2389/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2389/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2389-:d:1085453

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2389-:d:1085453