EconPapers    
Economics at your fingertips  
 

Experimental Study on Mineral Dissolution and Carbonation Efficiency Applied to pH-Swing Mineral Carbonation for Improved CO 2 Sequestration

Natália R. Galina (), Gretta L. A. F. Arce, Mercedes Maroto-Valer and Ivonete Ávila
Additional contact information
Natália R. Galina: Laboratory of Combustion and Carbon Capture (LC3), Department of Energy and Chemistry, School of Engineering, UNESP—São Paulo State University, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá 12516-410, SP, Brazil
Gretta L. A. F. Arce: Laboratory of Combustion and Carbon Capture (LC3), Department of Energy and Chemistry, School of Engineering, UNESP—São Paulo State University, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá 12516-410, SP, Brazil
Mercedes Maroto-Valer: Research Centre for Carbon Solutions (RCCS), School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
Ivonete Ávila: Laboratory of Combustion and Carbon Capture (LC3), Department of Energy and Chemistry, School of Engineering, UNESP—São Paulo State University, Av. Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá 12516-410, SP, Brazil

Energies, 2023, vol. 16, issue 5, 1-19

Abstract: Mineral carbonation incurs high operating costs, as large amounts of chemicals and energy must be used in the process. Its implementation on an industrial scale requires reducing expenditures on chemicals and energy consumption. Thus, this work aimed to investigate the significant factors involved in pH-swing mineral carbonation and their effects on CO 2 capture efficiency. A central composite rotatable design (CCRD) was employed for optimizing the operational parameters of the acid dissolution of serpentinite. The results showed that temperature exerts a significant effect on magnesium dissolution. By adjusting the reaction temperature to 100 °C and setting the hydrochloric acid concentration to 2.5 molar, 96% magnesium extraction was achieved within 120 min of the reaction and 91% within 30 min of the reaction. The optimal efficiency of carbon dioxide capture was 40–50%, at higher values than those found in literature, and 90% at 150 bar and high pressures. It was found that it is technically possible to reduce the reaction time to 30 min and maintain magnesium extraction levels above 90% through the present carbonation experiments.

Keywords: mineral carbonation; pH swing; serpentinite; CCUS; central composite rotatable design (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2449/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2449/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2449-:d:1087530

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2449-:d:1087530