Pool Boiling of Novec-649 on Inclined Microchannel
Robert Kaniowski ()
Additional contact information
Robert Kaniowski: Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia P.P. 7, 25-314 Kielce, Poland
Energies, 2023, vol. 16, issue 5, 1-17
Abstract:
Significant amounts of heat flow can be removed with small temperature differences by boiling. This process is used in a variety of industries, e.g., cooling electronics, digital circuits, power sources, etc. Heat dissipation from equipment that generates significant heat flows involves the movement of thermal energy through a wall into a cooling fluid. In the present study, this mechanism was analysed during the boiling of Novec-649 fluid at atmospheric pressure. The heat transfer surfaces were samples made of copper with milled, parallel grooves with a depth of 0.3 mm and a width ranging from 0.2 to 0.5 mm in 0.1 mm increments for straight channels and channels inclined with respect to the vertical by 30° and 60°, respectively. The study was carried out from the onset of nucleate boiling, approximately q = 7 kWm −2 with a heat flux increase until the critical heat flux was reached. The maximum heat flux was 262 kWm −2 and the heat transfer coefficient was 19.4 kWm −2 K −1 , achieved for surfaces with straight microchannels. A maximum heat flux increased by 80% and a heat transfer coefficient twice as high compared to a smooth surface was obtained. The performance of the experiment can be deemed adequate, considering that it compares well with the correlation results of different authors.
Keywords: pool boiling; inclined microchannel; heat transfer coefficient; boiling curves (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/5/2476/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/5/2476/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:5:p:2476-:d:1088355
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().