Peer-to-Peer Electrical Energy Trading Considering Matching Distance and Available Capacity of Distribution Line
Natnaree Tubteang and
Paramet Wirasanti ()
Additional contact information
Natnaree Tubteang: Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
Paramet Wirasanti: Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
Energies, 2023, vol. 16, issue 6, 1-23
Abstract:
The concept of peer-to-peer (P2P) energy trading leads to the flexible energy transaction of prosumers and consumers, for which the P2P business model is normally the main attention. It still requires system operators to address the challenges in trading and constraint problems. In this context, this work regards the congestion constraint in conjunction with energy trading. Firstly, a matching approach based on the cost path is proposed. It is consistent with the cost for the dispatch along each route, making a suitable matching in both distance and bids. In combination with the matching process, the available capacity has to be considered to avoid line congestion. Secondly, the bus transfer factor (BTF) and the partitioning zone approach are proposed to overcome the issue. BTF refers to a response of bus power to the congested line power. The partitioning zone, separated into the source and the load area, enables a simple management strategy. Thereby, the power adjustment in each area follows BTF. Moreover, compensation and opportunity cost are discussed. In comparison with the demand-side reprofiling approach, this work creates more trading chances for buyers and sellers by 24.70% and 30%, respectively. The reason is traders do not have to curtail their power unnecessarily for congestion management.
Keywords: peer-to-peer energy trading; electricity energy market; matching approach; congestion management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/6/2520/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/6/2520/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:6:p:2520-:d:1089930
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().