A Literature Review on Methods and Metrics for the Analysis of Outdoor Air Displacement Conditions in the Urban Environment
Ritesh Wankhade (),
Giovanni Pernigotto and
Michele Larcher
Additional contact information
Ritesh Wankhade: Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
Giovanni Pernigotto: Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
Michele Larcher: Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
Energies, 2023, vol. 16, issue 6, 1-31
Abstract:
The ongoing pandemic has driven the attention of both policy makers and professionals of the building sector towards the need for proper ventilation of the indoor environment. Despite accurate ventilation control only being available with mechanical ventilation systems, in several countries worldwide the renovation of indoor air relies mainly on natural solutions. In this context, in the design of new or renovated buildings, conventional natural ventilation rates are typically assumed to be in agreement with available technical standards, sometimes regardless of the actual external conditions. For instance, local wind speed and direction, as well as buoyancy-driven air displacements, are not considered, even if they can significantly affect the ventilation efficacy for the designed buildings. Moreover, the local outdoor temperature and the presence of pollutants are rarely accounted for, even though they can represent interesting inputs not only for naturally ventilated buildings but also for mechanical ventilation systems. In the framework described above, this review paper aims to provide an overview of the current state-of-the-art of the research regarding air displacement and conditions in the urban context, focusing on the main methods, parameters and metrics to consider in order to ensure a deeper and more accurate modelling of natural ventilation potential in the urban built environment. The analysis of the literature includes both experimental and numerical studies. As regards the latter ones, the features of the chosen urban areas—real or parametric ones—the adopted turbulence models and the indexes calculated as simulation outputs were analysed, with the purpose of defining a common framework to support future extensive numerical studies.
Keywords: computational fluid dynamics; natural ventilation; street canyon; turbulence models; urban ventilation; urban ventilation metrics; urban building design; wind tunnel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/6/2577/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/6/2577/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:6:p:2577-:d:1091964
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().