EconPapers    
Economics at your fingertips  
 

Feasibility of the Production of Argemone pleiacantha Ultrasound-Assisted Biodiesel for Temperate and Tropical Marginal Areas

Javier Sáez-Bastante, Miguel Carmona-Cabello, Elena Villarreal-Ornelas, Ricardo Trejo-Calzada, Sara Pinzi and M. Pilar Dorado ()
Additional contact information
Javier Sáez-Bastante: Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain
Miguel Carmona-Cabello: Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain
Elena Villarreal-Ornelas: Regional Unit of Arid Areas, Chapingo Autonomous University, Pueblo Bermejillo 35230, Dgo., Mexico
Ricardo Trejo-Calzada: Regional Unit of Arid Areas, Chapingo Autonomous University, Pueblo Bermejillo 35230, Dgo., Mexico
Sara Pinzi: Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain
M. Pilar Dorado: Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain

Energies, 2023, vol. 16, issue 6, 1-14

Abstract: The present work studies biofuel production using an American native species that belongs to the Argemone genus. It is considered a weed, and its presence extends from the southern United States to some areas of South America; the species Argemone pleiacantha , together with other species of the same genus, is known as “chicalote”. Oil physical and chemical properties confirm that chicalote oil is an effective raw material for biofuel production, presenting a fatty acid composition similar to that of soybean oil. A biodiesel production study was carried out using two methods of synthesis, conventional and ultrasound-assisted transesterification, employing the same molar ratio and amount of catalyst in both cases. Reaction time and supplied energy during synthesis were compared in batch mode. The results revealed that ultrasound-assisted transesterification has significant advantages over the conventional one in terms of reaction time and energy savings during chicalote oil synthesis to produce fatty acid methyl esters.

Keywords: bioenergy; ultrasound; non-edible oils; chicalote (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/6/2588/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/6/2588/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:6:p:2588-:d:1092277

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2588-:d:1092277