Aspects Regarding the Modelling and Optimization of the Transesterification Process through Temperature Control of the Chemical Reactor
Ruxandra-Cristina Stanescu,
Cristian-Ioan Leahu () and
Adrian Soica
Additional contact information
Ruxandra-Cristina Stanescu: Department of Automotive and Transport Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
Cristian-Ioan Leahu: Department of Automotive and Transport Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
Adrian Soica: Department of Automotive and Transport Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
Energies, 2023, vol. 16, issue 6, 1-17
Abstract:
Currently, biofuels represent a solution for the European Union in the transportation sector in order to reduce the greenhouse gas (GHG) emissions and the dependency of fossil fuels. Biodiesel from vegetable oils is a solution for countries with low GDP per capita to strengthen the internal agriculture, provide jobs, and reduce the use of fossil fuels. In this study, we model and simulate a temperature regulator designed for the biodiesel transesterification process in a discontinuous batch reactor, using methanol and a homogenous basic catalyst. The simulation was based on the kinetical model of the transesterification reaction and the mathematical model of the reactor. We considered molar ratios of alcohol/oil of 6:1 and 9:1, respectively, to shift the reaction equilibrium towards the production of fatty acid methyl esters. In the design of the simulation, the methanol boiling point was considered a restriction, therefore, temperatures below 65 °C were imposed. The results demonstrate that the increase in temperature results in a decrease in the reaction time and a higher yield, especially for the 6:1 molar ratio reaction, and that the optimum temperature for the batch reactor is of 60 °C. Automatic control improves the performance and costs of production.
Keywords: biofuel; transesterification; reactor; temperature control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/6/2883/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/6/2883/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:6:p:2883-:d:1102786
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().