EconPapers    
Economics at your fingertips  
 

Aerothermal Performance and Soot Emissions of Reacting Flow in a Micro-Gas Turbine Combustor

Heyu Wang and Kai Hong Luo ()
Additional contact information
Heyu Wang: Mechanical Engineering Department, Faculty of Engineering Sciences, University College London, London WC1E 7JE, UK
Kai Hong Luo: Mechanical Engineering Department, Faculty of Engineering Sciences, University College London, London WC1E 7JE, UK

Energies, 2023, vol. 16, issue 7, 1-19

Abstract: Micro-gas turbines are used for power generation and propulsion in unmanned aerial vehicles. Despite the growing demand for electric engines in a world striving for a net zero carbon footprint, combustion gas turbines will continue to play a critical role. Hence, there is a need for improved micro-gas turbines that can meet stringent environmental regulations. This paper is the first part of a comprehensive study focused on understanding the fundamental performance and emission characteristics of a micro-gas turbine model, with the aim of finding ways to enhance its operation. The study used a multidisciplinary CFD model to simulate the reacting flow in the combustion chamber and validated the results against experimental data and throughflow simulations. The present work is one of the few work that attempts to address both the aerothermal performance and emissions of the gas turbine. The findings highlight that parameters such as non-uniform outlet pressure, fuel-to-air ratio, and fuel injection velocity can greatly influence the performance and emissions of the micro-gas turbine. These parameters can affect the combustion efficiency, the formation of hot spots at the combustor–turbine interface, and the soot emissions. The results provide valuable insights for optimizing the performance and reducing the emissions of micro-gas turbines and serve as a foundation for further research into the interaction between the combustor and the turbine.

Keywords: combustor; micro-gas turbine; computational fluid dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/2947/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/2947/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:2947-:d:1105498

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2947-:d:1105498