EconPapers    
Economics at your fingertips  
 

Evaluation of the Influence of the Load Resistance on Power and Efficiency in the Square and Circular Periodic WPT Systems

Jacek Maciej Stankiewicz ()
Additional contact information
Jacek Maciej Stankiewicz: Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351 Bialystok, Poland

Energies, 2023, vol. 16, issue 7, 1-19

Abstract: We are currently seeing an increasing number of devices that support wireless power transfer (WPT) technology. In order to avoid early prototyping and carry out a series of experimental analyses, it was possible to use numerical methods at the design stage to estimate the potential power transfer and efficiency of the system. The purpose of this study is to present a method of analysis for a periodic wireless power transfer system, using periodically arranged planar coils with field and circuit models. A three-dimensional numerical model of a multi-segment charging system with periodic boundary conditions was solved with the finite element method (FEM). An equivalent circuit model of the periodic WPT system was proposed, and the required lumped parameters were obtained using analytical formulas. Mathematical formulas were supplemented with the analysis of several geometric variants, taking into account different sizes of transmitting and receiving coils, as well as different numbers of turns. Both proposed methods of analysis allowed for the determination of load resistance values at which the variants of WPT systems considered in the research had maximum efficiency. The ranges of load resistance values in which the efficiency of the system exceeded 50% were indicated. The results obtained are very helpful in the proper selection of the load resistance, without the need for multiple tests and their resulting multiple measurements. The results also showed that the proposed circuit model was able to achieve similar accuracy as the numerical model, and the complexity of the model and analysis was significantly reduced. The obtained results will allow the design of WPT systems with appropriate selections of load resistance to achieve maximum efficiency.

Keywords: wireless power transfer; inductive power transfer; load resistance; numerical analysis; circuit analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/2950/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/2950/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:2950-:d:1105609

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2950-:d:1105609