Generation of a Typical Meteorological Year for Global Solar Radiation in Taiwan
Tsung-En Hsieh,
Bianca Fraincas and
Keh-Chin Chang ()
Additional contact information
Tsung-En Hsieh: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan
Bianca Fraincas: International Program on Energy Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Keh-Chin Chang: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan
Energies, 2023, vol. 16, issue 7, 1-13
Abstract:
Solar energy technology is now a mature and environmentally friendly solution. Long-term and credible solar radiation data are required for energy assessments of solar applications. Due to the lack of a typical year and accurate, long-term global solar radiation data for Taiwan, data for the typical meteorological year (TMY) of global solar radiation from 30 weather stations across Taiwan of the Central Weather Bureau were gathered for this study. The database for solar radiation contains data for the 15 years between 2004 and 2018, except for one (Chigu) weather station which provides data for the 12 years between 2004 and 2015, which possesses credible data quality and meets the requirements of the TMY method. The minimum and maximum TMY global radiation observed from the 30 weather stations are 3421.8 and 5479.9 MJ / m 2 at the Zhuzihu (Station 2) and Tainan (Station 16) weather stations, respectively. The effects of topography, geography, and latitude on the global radiation distribution in Taiwan are discussed. A trend of increasing annual global radiation from the northeast to the southwest in the Taiwanese mainland, which is attributed to the combined effects of topography and latitude, is observed. This credible, long-term database for global solar radiation is a prerequisite reference for solar information for use in determining the performance of solar energy applications in Taiwan.
Keywords: global solar radiation; typical meteorological year; TMY3; Taiwan (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/2986/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/2986/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:2986-:d:1106769
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().