A Cost–Benefit Analysis for Utility-Scale Agrivoltaic Implementation in Italy
Girolamo Di Francia () and
Paolo Cupo
Additional contact information
Girolamo Di Francia: ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, P.le E. Fermi, 1, Portici, 80055 Napoli, Italy
Paolo Cupo: Division of Agricultural Economics and Policy, Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055 Napoli, Italy
Energies, 2023, vol. 16, issue 7, 1-19
Abstract:
Utility-scale photovoltaic plants can take up areas as wide as several tens of hectares, often occupying spaces normally used for other purposes. This “land competition” issue might become particularly relevant for agriculture since, similarly to the production of photovoltaic electricity, farming uses the sun as a primary energy source. Thus, there is increasing interest in investigating agrivoltaic plants that allow the coexistence of agricultural activity and the production of electricity from photovoltaics. Such solutions are more complex and expensive than standard ground-mounted photovoltaic plants, so it is questionable whether the economic revenues produced by the agrivoltaic choice and resulting from both the cropland activity and electricity production can compensate for the high costs involved. The problem is further complicated by the fact that both crop revenues and photoelectricity costs depend, in general, on the geographical location. In this study, a cost/benefit methodology was developed to investigate the conditions under which the installation of an agrivoltaic utility plant can be economically advantageous compared with a standard ground-mounted photovoltaic plant. The analysis relies on the evaluation of both the extra cost related to the agrivoltaic choice and the performance benefit related to the crop revenues. By fixing the capacity of PV utility plants to be installed in all Italian regions, results were validated, considering crops such as wheat, corn, soybean, potato, and sunflower that make use of wide areas. It was determined that the higher infrastructural costs of agrivoltaic plants seriously hamper their installation, even for high-revenue croplands, unless suitable supporting policies in the form of public subsidies are conceived. In this context, it would be useful to evaluate whether such financial aids conceived to support agrivoltaic implementation in productive agricultural areas could be better used to support agrivoltaic installations in croplands at risk of abandonment or even already abandoned croplands, recovering otherwise unproductive agricultural lands.
Keywords: agrivoltaic; photovoltaic; agriculture; cost–benefit analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/2991/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/2991/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:2991-:d:1106901
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().